
Data processing in the wake of massive multicore

processors

J Kowalkowski

Scientific Computing Division, Fermi National Accelerator Laboratory

E-mail: jbk@fnal.gov

Abstract. Developments in concurrency (massive multi-core, GPU, and architectures such as
ARM) are changing the physics computing landscape. This paper will describe the use of GPU
and massive multi-core, and the changes that result from massive parallelization and the impact
on data processing.

Major HEP event-processing framework software runs within the changing computing
environment. These frameworks have been evolving to accommodate the changes. The framework
changes need to go quite a bit further, to better handle coprocessors with alternative architectures.

1. Introduction
The HEP software frameworks are evolving to accommodate changes in large-scale computing
environments. The purpose of this paper is to explore the question of whether or not this evolution
is going far enough given the current movement in computing towards massive multicore, better
known as many-core systems. The focus will be how many-core computing affects our software
systems. Currently the best examples of many-core are the NVIDIA GPGPU and the Intel MIC
Xeon Phi coprocessors1.

1.1. Reminders
The computing changes are real. They have been recognized everywhere for a while now, as
evident from the R&D groups that have popped up within CERN, FNAL, and LBNL. The
concurrency forum2 and CERN OpenLab have also appeared. These groups are at least partly
addressing the many-core coprocessor issue. The concurrency forumhas done an excellent job at
tracking the major software infrastructure efforts and making current information available on
the web.

The computing changes are fundamental. The focus is on large core counts: cores with
reduced memories, reduced instructions, and much greater vector processing capabilities. The
larger leadership class supercomputers show this movement, along with other important features
such as multiple high-speed interconnects. Even the smaller footprint tablets have multicore
ARM processors with integrated GPUs.

Our colleagues within the accelerator modeling, LQCD, and Computational Cosmology areas
have embraced these newer archtectures. They have well-established relationships with the

1 For the purposes of this paper accelerator or coprocessor can be used interchangably
2 See http://concurrency.web.cern.ch/

Rank Name
Total
Cores Processor Mflops/Watt Coprocessor

1
Tianhe-2
(MilkyWay-2) 3120000 Intel Xeon E5-2692 12C 2.2GHz 1901.54 Intel Xeon Phi 31S1P

2 Titan 560640 Opteron 6274 16C 2.200GHz 2142.77 NVIDIA K20x
3 Sequoia 1572864 Power BQC 16C 1.600GHz 2176.58 None
4 K computer 705024 SPARC64 VIIIfx 8C 2.000GHz 830.18 None
5 Mira 786432 Power BQC 16C 1.600GHz 2176.58 None
6 Stampede 462462 Xeon E5-2680 8C 2.700GHz 1145.92 Intel Xeon Phi SE10P
7 JUQUEEN 458752 Power BQC 16C 1.600GHz 2176.82 None
8 Vulcan 393216 Power BQC 16C 1.600GHz 2177.13 None
9 SuperMUC 147456 Xeon E5-2680 8C 2.700GHz 846.42 None

10 Tianhe-1A 186368 Xeon X5670 6C 2.930GHz 635.15 NVIDIA 2050

Figure 1. Excerpt from the Top500 Supercomputing Sites highlighting qualities of the top ten
ranked based on the LINPACK benchmark

US HPC3 communities. This adventure is largely just starting for many of the HEP experimental
software infrastructure teams.

1.2. Architecture changes
1.2.1. Mainstream computing in HEP The current computing environment, with its heavyweight
cores, can be simply described as a golden era. One of its end products are multi-gigabyte user
applications. Take a look at, for example, Adobe acroread, Microsoft Office and Eclipse. Each of
these serves a useful purpose, but one cannot help but be surprised at their enormous size and
complexity of installation. HEP has not been immune to this.

Heavyweight cores do make life easy with seemingly endless memory and wonderful high-level
languages. Now we experience mostly a single OS and a single architecture. Has this spoiled
developers to some degree? The heavyweight microprocessors in use are beautiful in design and
function: instruction scheduling, branch guessing, and sophisticated caching. Unfortunately the
amount of work now required for the computational output has become too high given limited
compute resources and an ever-increasing needs for processing [1]. As a result, the field has been
ripe for alternative technology to squeeze in. The underlying machinery that has made life as
a software developer so straightforward, essentially hiding much of the complexity and helping
our productivity, has also created gluttons. Developers have become somewhat spoiled; it is
amazingly easy to use up all the available resources. For a long time, the doubling of available
hardware resources every two years was great and made this type of thinking easy. The focus on
object-oriented C++ and needless abstraction layers did not help.

1.2.2. On the horizon What is now on the horizon for HEP is already out there in other areas
of scientific computing, and not far beyond the reach of HEP. The Top500 supercomputer listing
is a good place to look for computing trends because it is an indicator of where research money is
being spent. It also shows who is driving change and innovation. Figure 1 shows a few attributes
of the top ten machines. Note that four of the ten heavily utilize many-core coprocessors. Others
are fairly special-purpose machines. Note also the modest multicore count on all the top ten.
This multicore count has remained at a similar level for years. Megaflops/watt is now included
as a relevant quality. Although megaflops is of limited value within HEP applications, a better
measure of performance can be developed for evaluting computational effieciency.

3 High Performance Computing

1.2.3. Available now Table 1 highlights key features of the currently available many-core
processors that directly affect software frameworks and event processing applications. For
the current K20, the key features that directly affect the ability to develop code (inhibiting or
enabling) that does useful work are still the low memory available per thread and the simultaneous
compute capacity of > 2500 cores. A common MIC Phi processor has a total of 240 threads
available across the 60 cores. The memory is still very much limited to about 32MB/thread
(based on 8GB total). There is also a substanial VPU with 512 bit SIMD registers.

For the K20, the thread count is not a straightforward calculation. The threads cooperate
and the programming view is somewhat abstracted from the hardware view through the use of
blocks and grids. As an example, at full occupancy, assuming full occupancy for an algorithm,
1024 threads (the maximum per block) can use 32 registers and share about 24KB of high-speed
memory.

Phi K20
Power 300W 235W
Cores 60 2500
Threads 60 ∗ 4 = 240 2048 ∗ 13 = 26624
Memory/thread 8GB/240 = 33MB 32reg + 24kB shared

Table 1. Interesting properties of two modern many-core processors

1.2.4. The past It is worthwhile looking back at the time before the x86 era. In these earlier days
one needed to know nearly everything about the processor that was being used. To get anything
useful done required a good strong effort and many hours with the processor references manuals.
This was especially true of someone working in the embedded computing area. It was common
practice to write mini-operating systems or standalone barebones programming environments for
these processors. Maybe what we are seeing is a return to this kind of environment. There was
not much fear of computing then and hopefully the sort of detailed computing work required to
operate many-core will also be rewarding.

2. Software issues in general
2.1. On the way to many-core
With many-core computing comes a shift in the way software is organized and the way algorithms
are designed and implemented. Before entering further into many-core, one last detail needs be
be mentioned about current-era applications with regards to software development. What has
the modern heavyweight processor done for software?

During this era Java came about. Javascript is now everywhere. For HEP, C++ is still here
and strong. C++ remains unique in trying to be broadly accommodating with programming
styles and efficiency. What do people outside HEP say of its use? Some say its a thing of the
past because it is too complex and requires too much thinking because of its strict typing. Are
they correct? If the language is used poorly, or used as the language was in the mid-90s, than
the answer is yes.

With all the complexity of the current heavyweight core, it can be difficult to quantify
performance in a way that attributes work done to the various internal components. It is easy to
measure many things, but not easy turning the collected data to valuable information that helps
us predict how non-trivial changes affect code performance [jbk-ref].

2.2. Development in this future context
There is still a clash of thinking with other organizations. Working with the HPC community can
be challenging. HEP codes have no single computational kernel that can be unrolled, unfolded,
turned to assembly language, expanded from 500 lines of code to 15,000 lines in order to increase
its performance on specialized architectures. They can also quickly note that the key to better
performance is the removal of all Object Oriented programming, largely because it seems that
early C++ code used a lot of virtual function calls within tight loops.

The architectures and integration are different on these many-core processors. The
compromises in programming flexibility for lower power and the need for greater computational
load are leading to problems for HEP applications. In the end, HEP applications are still a
mismatch for many-core architectures. This is partly because of the many-core expectations of
operating on a regular grid using lots of vector operations, and partly because of the habits HEP
has developed and the problems that we have encountered. In many cases, HEP codes have been
classified as irregular. Many pattern recognition, clustering, and decision analysis problems fit
this description [2]. Slow progress has been experienced for many-core HEP applications due to
the immaturity of the software and hardware for general purpose scientific computing. Many-core
architectures, with their segmented memories, large vector units have not traditionally been
geared for these types of problems. This has made progress for showing reasonably good value
slow. The latest version of these processors, however, show good signs of moving in the HEP
direction.

2.3. Why all the excitement?
Are the massively parallel many-core platforms really all that interesting? Are they something
we need to be worried about? From the software infrastructure point of view, they ought to
be something we care about and something to consider carefully. Such specialized hardware is
becoming widely available and can provide a cost effective way to accomplish more work. The
heavyweight processor, on the other hand, has remained somewhat similar in architecture and
in platform requirements. Software frameworks are used to define HEP applications, so their
organization and design is critical. HEP has very large collaborations that successfully work
together. To a large extent, this is due to the software infrastructure components which have
enabled so much sharing of code. A few of the key requirements that change with many-core are
choosing the just the right unit work when many different processors are involved, and extra
steps that are likely needed such as ordering and summarizing of partial results.

3. Software frameworks on many-core
The standard HEP event-processing framework has been an essential organ for development,
data reduction, and analysis. To a large extent, the frameworks that are in operation still
have the processing model shown in the diagram on the left of Figure 2. For C++ frameworks,
this architecture was in use before 2000, although the facilities used and the capabilities of the
current systems are far more advanced than the early ones. The implementations of scheduling
and interactions amongst the components differs by experiment, but all of them largely fit this
definition, with ROOT as the main I/O format for the readers and writers. The boxes in the
modules and services sections represent the different flavors of plugin. The impact on these
frameworks and the various plugins due to many-core processors will be large (as it currently is
for multicore), partly because it is where major APIs and protocols exist. The design of interfaces
will directly impact application performance.

For the remainer of this section, the assumptions for data sizes and processing times listed in
Table 2 will be used. Any bandwidth estimates will be based on these numbers and only account
for the input data rates.

E
Input Output

Event paths

Task 1 Task 2 Task M

Event
Processor

Stream 1

Stream 2

Stream J

ModA ModB

ModA ModB

ModA ModB

Service Event

Service Event

Service Event
HitFinding Tracking MuonTracking ParticleID

Current Event
Store

Writer Reader

Control-flow Data-flow

Calibration Message Logging Timing

Data Model

Modules

Services

Event
Loop

Figure 2. Standard event processing frameworks: Software that coordinates the processing
of indendent collision events using pluggable reconstruction, filtering, and analysis modules.
Modules add data to and retrieve data from one event. View before (left) and after (right)
reorganization for use in multicore systems

∼ 10 − 30 sec Reconstruction time
1-20Hz Skim job event rate
1MB Reconstruction event size
150KB Analysis Object Data (AOD) event size

Table 2. Data assumptions based on CMS run 1 approximations

3.1. The current sitation
Many of the frameworks are being changed from serial processing to parallel processing to better
accommodate multicore nodes. A simplified view and typical set of changes are depicted in the
right diagram of Figure 2. These changes permit multiple events, shown as multiple processing
streams in the diagram, to be active at one time. They also allow for parallelism at the module
level where there are no data dependencies, and within the module at the user-written algorithm
level. Streams provide serial paths for producer modules4.

A key design decision that many framework developers have made is to more towards task-
oriented processing to help manage multithreading. Intel Threading Building Blocks (TBB) [3]
has been the tookit of choice for many projects. The key principle is to assign work to tasks,
and allow the system to efficiently schedule tasks to run within threads assigned to cores. A
common task model allows for both framework-generated work and algorithm-generated work to
be mixed and scheduled. The input and output interfaces remain special, because the system
facilities behind them have different capacities from the available computational resources.

Running the reorganized framework on a current multicore cluster nodes can have several
advantages over the older single serial processs per core model. There is now one process
capable to utilizing all resources on a node. This will reduce memory use, reduce dataset
processing latencies (mainly due to the finer task queuing), and allow for multithreaded algorithm
contributions. These multicore changes do not greatly affect the overall throughput of a standard
cluster node as shown in Table 2.

3.2. Future direction
The left diagram of Figure 3 shows several of the important attributes of a many-core processor.
A processor such as the K20 can efficiently schedule work within hardware-assisted threads to
available cores. Each group of threads has a block of shared memory. All threads have access to
a larger global memory (usually 6–10GB). The simple design of the processing units synchronizes
execution of instructions across an entire block of threads, making programming more difficult.

4 A producer adds derived data to an event

File Serving Infrastructure

Global Memory

Event Processor

I/O System Disk Network

Integrated CPU
Coprocessor 1

Integrated CPU
Coprocessor 3

Integrated CPU
Coprocessor 2

Integrated CPU
Coprocessor 4

3GB/s *4=12GB/s (AOD)
102MB/s *4=408MB/s (Reco)

Global Memory

Core 1

I/O System? PCI? Network?

Core N Core 2

Thread 1 Thread M Thread 2

Local Memory Local Memory Local Memory

SICore 1 SICore J SICore 2

The many-core coprocessor

Figure 3. The future many-core processor with serial integrated cores (left) and a possible
setting within a compute node alongside the event processing framework (right).

This is also true of the vector operations available on the Xeon Phi. Table 1 highlights many of
the key many-core properties relevant for developers. In addition, the current processor boards
sit on a PCI bus, making data transfer costs the major bottleneck in performance.

Current systems that employ the K20 GPU or the Xeon Phi typically have between two and
four processor boards per node attached to the PCI bus. Such a node is capable of 5 − 10×
the compute capacity of a current 32 multicore node. Using the typical CMS event processing
numbers, the bandwidth into the node may be as high as 3GB/s (AOD) or 102MB/s (Reco).
Such performance requirements could easily exceed the network capabilities of current clusters.
Many of the processor boards can be hooked directly into the external network, but that requires
yet more software infrastructure changes. A node with this compute capacity will require low
overhead scheduling and coordination within the software frameworks. The serial heavyweight
cores will do the coordination, aid in computational codes where appropriate, and participate
in I/O activities. It will be easy to overload the processor that is easiest to program, which is
certainly going to be the coordination processor. Data exchange and sharing within and between
computational areas (GPU processor or Phi processor) is likely to increase, meaning that a
portion of our coordination software may need to be present on the light-weight cores.

With the increase in computational capabilities of individual nodes, will the software
frameworks become distributed? Even within a node, they will need many of the properties of
distributed frameworks: coordination of separate memories and load balancing across different
kinds of resources. Even the sharing of data within the Event Data Model (EDM) will be affected
by multiple, distinct memories.

Serial integrated cores (SICores) are also shown in Figure 3, in addition to the many-core
features. This is a likely future direction for the many-core processor, where a version of the
heavyweight multicore processor is available directly on the same chip. The ARM or PowerPC
architecture are good candidates for these SICores since they are already known for low power,
system-on-chip use, and embedded applications. The combination of many-core and multicore
will form a powerful hybrid processor platform.

One possible view of a hybrid node is shown in the right diagram of Figure 3. A node with
four hybrid processors could be capable of a 20 − 40× increase in performance over a standard
multicore cluster node. Unfortunately the bandwidth into such a node might have be 12GB/s

(AOD) or 408MB/s (reco) just to keep good processor utilization.

Event Size@Speed 1-core 32-core 256-core 512-core >1024-core
150KB@20Hz 3MB/s 96MB/s 768MB/s 1.5GB/s 3GB/s
1MB@.1Hz 100KB/s 3.2MB/s 25MB/s 51MB/s 102MB/s

Table 3. Impact on moving toward high compute capacity nodes on input data bandwidth

Commercial products already exist with some of these features. There is the NVIDIA Tegra 4
[4] used in hand-held devises. It has 72 GPU cores and a quad-core ARM processor in one
package. The Dell Copper [5] can hold up to 12 sleds in a 3U chassis, with each sled containing
four quad-core ARM processors. The Cray XC30 blade [6] comes in three flavors: GPGPU,
MIC, or multicore. Each blade has several processors on it. Customers pick and choose blades
depending on the workload type. The blades plug directly into a backplane with builtin high-speed
networking.

4. Programming issues
4.1. Aspects of programming many-core
There are special programming languages and libraries available to help developers use the
many-core hardware effectively. The main tools for the common processors are CUDA for
the K20 and Intel Cilk Plus, and the special intrinics and pragmas available in the Intel icc
compiler for the Xeon Phi. Because of the specialized nature of these compute resources, these
language extensions are likely to be permanent. These machine-specific programming features
complicate every aspect of programming from coding (perhaps three or more implementations
with partial overlap may be needed) to validation and testing. Each of these systems will embed
the co-processor code into the host executable using cross-compilation tools. This will affect the
development tool suites, release management, and moving to new compiler versions. It is easy
to look at the Intel MIC and conclude that because there is overlap and commonality of the
basic x86 instruction set, that development will surely be easier. With all the assists available
in the programming tools and the internal hardware differences, it is not clear whether this
compatibility will be as helpful as it appears.

The news is not all bad. GPGPU programming has come a long way in a very short time.
The newer systems with compute capability 2.x make programming a bit smoother even though
the constraints in using the cores and memory hierarchy are very similar to prior systems. The
3.0 capable systems go even further. Hyper-Q and dynamic parallelism capabilities are important
for framework and algorithmic development. Hyper-Q allows many processing streams to be
active at the same time. Dynamic parallelism allows GPU kernel functions to start more GPU
kernels without returning control to the host processor. Overlapping transfers with computation
boosts performance. There is still plenty of work left in testing the limits and flexibility of using
this technique to see how an event-processing framework might take full advantage of them.
Both are necessary to keep the GPU busy without incurring communications and call overheads.
The dynamic parallelism feature will now permit elements of the software framework scheduling
to occur within the GPU.

Movement towards the hybrid nodes described earlier will affect nearly all the subsystems of
an event-processing framework. The increase in compute capability will stress the I/O systems.
Adding distributed processing features to the framework will affect scheduling of work, the event
data model (EDM), configuration, and organization of services. For scheduling, TBB will help
provided that data dependencies are made more visible. For the EDM, features such as delayed
reading and loading will need to be looked at closely. For configuration, the specification of
boundaries (where elements are assigned) and constraints (what resources can be used) will need

expansion. Steps for closing out data runs and other logical data grouping will need additional
processing and synchronization to perform reductions (sums and aggregations) across active
events.

4.2. Already-visible software issues
Initial developments using available use-cases for reconstruction and event filtering on GPGPU
many-core processors has revealed many issues. The considerations necessary to address the small
hierarchical memories are perhaps the biggest. Bank access patterns are visible in the code and
an algorithm developer must understand how to best traverse memory efficiently. Small changes
in access patterns can yield wildly difference performance. Fortunately many of these access tricks
also yield improvements in the main multicore processors. Doing odd things like recalculating
results rather than caching them can yield performance improvements. Tool-chain-specific code
blocks using CUDA or language extensions, or even different algorithm encodings with “#defines”
or equivalent may be necessary. The framework or user-written algorithms will need to be aware
when the lightweight HPC cores are better to use than the serial cores. The bigger problem is
the need to choose where modules or algorithm phases are to be run. In prototype code, this is
made easy by simplifying assumptions, such as hardcoded choices (for processor) and dedicated
nodes. Eventually bodies of user code (modules or algorithms) will need to be scheduled where
they will run best.

Collecting additional summary data and diagnostic information during algorithmic work will
no longer be straightforward. This includes data for validating algorithms. It is currently easy
in serial processing mode to tack extra variables onto the module data area (modules are C++
objects), or onto temporary data structures that are active during the module processing. Many
times this extra data has associated special logic used to add to variable-length data structures.
Such deviations from common instruction flow will likely lead to deviations in work load and
therefore lead to performance decreases in lightweight cores.

Using the task model for parallelism (through TBB) has been helpful. It is a good direction
that everyone is going towards and it fits naturally with a higher-level interfaces for dividing up
work in loops. It does not alleviate the need for thoughtful construction of data structures for
the tasks to operate on and careful division of work into stages that are relevant for the available
processor types. It does alleviate the need for locking in user code when used well. Fortunately
many of the optimizations made to improve performance for many-core have also benefited in
the multicore environment.

5. A complete view
Figure 4 pulls together many of the thoughts from this paper and shows a possible outcome of
moving towards more specialized hardware within nodes and facilities available within a cluster.
The hybrid server cluster towards the top contains the many-core and multicore nodes to handle
heavy computational load. The big data management block towards the bottom contains the
essential and specialized infrastructure services to perform all data handling functions, including
file and database input and output, data filtering and selection, and movement to and from the
computational resources.

The user of such a system carries out the steps of developing a framework configuration and
requesting a collection of coordinated resources to perform a physics task. Launching of the job
through framework services involves placing the application components where they are best
suited to run (computational or external storage), using the specialized hardware that is available.
In this configuration, complexity of storage components and disk access is removed from the
computational elements, thus simplifying both the hardware and the software; only a network
streaming I/O service module is now needed in the framework. Data writing is delegated to
nodes where file and storage system access is best handled. Data selection is delegated to nodes

Custer
management

HPC-HTC
hybrid
server
cluster

Results
gather

Source
data
push

Big Data management: Commercial server
cluster

Data queries, filtering,
file handling,

streaming services

Collection services,
file writing,

storage use rules

User
Console
(Laptop)

Allocate,
Run,

Monitor,
Obtain results

Framework
configuration
and functions
for job now
span
specialized
resources

 Event Processor 1

 Event Processor 2

One event processor per allocated resources

 Event Processor N

 EP-N EP-2 EP-1

Essential
infrastructure
services

Figure 4. A cluster of the future with specialized resources for I/O and computations, with
highly distributed framework component.

designed for decision logic closely attached to the data catalogs and other indexing systems. In
this arrangement, some of the work is now done at the cluster level that traditionally was done
(with good results) at the node level within an event-processing application.

6. Summary
A mixed computing environment is inevitable if we are going to make use of high-performance
cores. Using these more specialized cores will be necessary to increase computational efficiency
and to keep computing cost effective. The expression of the work to be done may need to be
expanded to aid in the scheduling of work on a node that has 10× the capacity of a current
node. The cooperation of multiple events, multiple algorithms, and multiple nodes may require
more convenient ways to express the problem being handled. All the asynchronous processing
of events will cause a need for final reduction stages to properly order data as it is processed,
and provide statistical summaries. A change in strategy for algorithm development has already
started and consideration for load balancing will need to be incorporated in the frameworks.
The development strategy will need to accommodate both many-core and multicore. It is not
all that clear if the I/O subsystem and the event data representation (EDM) and other data
handling functions will be adequate for computational nodes described in this paper. For these
nodes, simpler streaming-based methods of I/O directly using a high-speed network may be more
appropriate, bypassing intermediate disk access wherever possible.

Both industry and research are moving towards performance increases through processor
specialization and power savings. This will keep operational costs constant or perhaps even
lower them. These changes translate to more independent components within the HEP software
infrastructure and therefore mean more complexity. More than ever we have a need for continued
cooperation from the different development teams, especially outside HEP, who do not have the

rich data structures or the advanced collaborative environments for sharing and development
code, but do have the parallel processing experience. As in previous computing eras, HEP
developers must be good at many levels of software development. The hope is that there is not
only room for this broad level of involvement in the highly specialized world of today, but that
there are also rewards to be had for entering into this sort of work.

References
[1] Brown 2010 Scientific grand challenges: Crosscutting technologies for computing at the exascale report from the

workshop held February 2010 URL http://extremecomputing.labworks.org/crosscut/PNNL 20168.pdf

[2] Monteiro P and Monteiro M P 2010 A pattern language for parallelizing irregular algorithms Proceedings
of the 2010 Workshop on Parallel Programming Patterns ParaPLoP ’10 (New York, NY, USA: ACM) pp
13:1–13:14 ISBN 978-1-4503-0127-5 URL http://doi.acm.org/10.1145/1953611.1953624

[3] Reinders J 2007 Intel threading building blocks 1st ed (Sebastopol, CA, USA: O’Reilly & Associates, Inc.) ISBN
9780596514808

[4] NVIDIA 2013 Nvidia tegra processors URL http://www.nvidia.com/object/tegra-4-processor.html

[5] Trader T 2012 URL http://www.hpcwire.com/hpccloud/2012-05-29/dell enters hyperscale arm race.html

[6] Hemsoth N 2013 URL http://www.hpcwire.com/hpcwire/2013-10-01/cray cascades over gpu coprocessor edge.html

